Pascal/66 compiler. That is, for the compilation of a given level
of the graphics package, the compiler must be supplied with the
types of procedures called from other levels and which will
eventually be linked to the library created for that level. The
informal distinction between private and exported procedures now
becomes essential. If so directed, Pinc can traverse additional
trees and extract exactly the headers of the procedures appearing
below an EXPORT catalog. This guarantees that the procedure
declarations used by the calling code are identical to that used in
the declaration of the called procedure and that only those
procedures which are designated exportable can indeed be
accessed externally. This approach is not 100% secure in the
event of rapidly changing declarations. But given that type-
checking is available only at compile-time and not at link-time, it
is far superior to attempting to keep declarations consistent
between levels by ad hoc means.

A more frustrating problem is presented by the need for for-
ward declarations. In Pascal, all procedures must be declared
before use and this results in the need for forward declarations, in
which the type declaration and the remainder of a procedure’s
declaration are separated to admit mutual recursion. Ideally, one
would like Pinc to analyze the procedure dependencies, and deter-
mine how to declare or order all the procedures within a level of
the package, without programmer intervention. However, this
level of sophistication is not yet our goal and Pinc at present only
handles the ordering of procedure declarations when the program-
mer divides the HEADER file into a HEADER and a FOR-
WARD file containing a forward declaration. All forward
declarations found within a level are placed in the inclusion file to
precede the definitions of all the procedure bodies themselves.
Though it works tolerably well, we feel a better solution is
needed. This illustrates very poignantly the problems of writing
production software in Pascal: a sophisticated tool is required to
present naturally organized source text to a one-pass compiler.

Discussion

Experience to date with the use of Pinc on the graphics
package is limited. However, it is already clear its advantages go
beyond the expected savings of programmer time and machine
resources that would otherwise be expended with multiple versions
of the package. Two major benefits emerge immediately.

First, programmers working on the package perceive a
much clearer view of the the nature of the package, both its glo-
bal structure and its detailed variation. Though no empirical
results have been sought, we are convinced that this clearer
understanding leads to more accurate and reliable maintenance of
the the software. Comprehension of complex source text is a
major obstacle faced by the maintenance programmer, and this is
compounded by the presence of multiple versions of the software.
Improving the presentation of the source to the programmer and
reducing the presence of duplicate source code alleviates some of
this burden and makes it easier to concentrate on the logic.

Second, the need to decide formally on how to structure the
package forces decisions, each of which better clarifies the source.
Versions must be characterized and named meaningfully, and as
with identifiers within programs the right choice for a name can
be critical. Procedures must be designated as private or export-
able. Such decisions force the programmer to think consciously
about aspects of the software which may be blurred when ad hoc
solutions are employed. What this amounts to is the introduction
of programming style in-the-large. An elementary configuration
language is available and the issues of stylistic expression must be
resolved. As with style issues in-the-small, time spent during
program synthesis pays dividends for the reader later on.

Furthermore, this organization is easily comprehended when
first introduced to programmers, since it follows the structure of
both Pascal and the graphics paclt This results in it being
adopted enthusiastically as its benefiis are perceived.

Conclusion

Through the use of a relatively simple organization for stor-
ing Pascal source text and a simple tool for selecting subsets of
this source for compilation, the management of a large and evolv-
ing computer graphics package has been enhanced. Based on a
general purpose file system in a conventional computing environ-
ment, the proposed technique is both inexpensive and easily
implemented.

Acknowledgement

We wish to thank J.C. Beatty and K.S Booth, the original
authors of the graphics package, for furnishing the motivation for
this work, a vehicle with which to conduct it and critical reviews
of our progress.

References

1 Beatty J.C., Booth K.S. “Teaching Computer Graphics at
the University Waterloo”, Proc. American Society for
Engineering Education Annual Conf. 1981,

2 Buxton J.N. “‘Stoneman: Requirements for Ada Program-
ming Support Environments”, US Department of Defense,
1980.

3 Cargill T.A. “*Management of the Source Text of a Portable
Operating System”, Proc. 4th Int. Computer Software and
Applications Conf. pp 674-768 IEEE, 1980.

4 Cargill T.A. “A View of Source Text for Diversely
Configurable Software”, Ph.D. Thesis, Technical Report
CS-79-28, Department of Computer Science, University of
Waterloo 1979.

5 DeRemer F., Kron H. “Programming in-the-large versus
programming in-the-small” Proc. Int. Conf. on Reliable
Software, SIGPLAN Notices 10:6 pp 114-121 1975,

6 Gustafson G.C. et al. “*Some Practical Experience with the
Pascal Language”, Proc. National Computer Conference
Vol 48, AFIPS, 1980.

7 Hall D.E. et al. *“A Virtual Operating System”,
Communications of the ACM 23:9 pp 495-502 1980,

8 Jensen K., Wirth N. Pascal User Manual and Report
Springer-Verlag 1974,

9 Wasserman Al (editor) Programming Environments Com-
puter 14:4 1980,



