Exploiting the GCOS File System -

Prior to tackling the organization of the graphics package, a
version of Thoth's Inclusion Builder was implemented for the
GCOS file system. This tool handled Zed and B (another BCPL
derivative) source and has been used successfully for the mainte-
nance of moderately large text manipulation software, such as a
spelling checker and a family of screen editors. However, to
accommodate the different nature of the GCOS file system, the
Inclusion Builder required adaptation to GCOS.

The fact that files must be leaf nodes could have been
finessed by designating a special name, and interpreting any file
with that name to be the information associated with its parent
catalog. Taken to an extreme, this leads to a file system in which
all files have the same name and there is never more than one file
below any catalog. If a sufficient set of tools were provided for
working with such a structure, the fact that the file system was
being used in this fashion would be obscured from the user. But
if one is prepared to go to such lengths, then a virtual environ-
ment, such as that developed at Lawrence Berkeley Labs[7], is
called for.

The preferred alternative here is to continue to use the file
system in a conventional manner, letting a naming convention
indicate the cases where one file is to be considered the child of
another, even though they are actually siblings in the file system.
This is accomplished by designating a special character, “-" say,
as a delimiter and then treating the file F-V as though it were a
son of F named V. Similarly, F-V-W is treated as a son of F-V
named W.

This cannot be used as a universal mechanism, because the
lengths of names are quite severely bounded. Moreover, there is
rarely a justifiable call for more than one level. Once versions of
versions become widespread, it is time to rationalize and simplify
the software's structure to use more appropriate abstractions.
What this convention does mean is that a version of a file can be
introduced naturally and rapidly as the software is modified. [t
avoids the difficulty of creating catalogs and moving files every
time a version is introduced.

Using this convention, the majority of the standard tools
which are available for operations on the file system can be used
meaningfully on the structured source text without modification.
Listing, copying, editing, looking at the structure of the source
files and so forth can all be be performed immediately with the
software tools at hand.

Structuring the Graphics Package

The structure of the package is presented top-down, showing
more and more detail about less and less of the package. The
root of the structure is the file system node
GRAPHICS/SOURCE, that is the catalog SOURCE at the first
level below the root of the structure owned by the timesharing
account GRAPHICS. Immediately below this are the root
catalogs for each of the five levels as shown in Fig. 2.

Below each of these catalogs is a number of files and
catalogs. A fixed organization and naming convention is used to
structure these, as shown in Fig. 3.

The files named by the reserved names CONST, TYPE and
VAR, are files which contain the constant, type and variable
declarations which are global to the procedures of level 1. The
catalogs named by the reserved words EXPORT and PRIVATE
are the roots of the subtrees containing the source for the
procedures accessible by the next higher level in the package and
those used exclusively by this level, respectively. (The distinction
between exported and private procedures is informal; neither Pas-
cal nor any compilers used on the package support this directly).
Alternate versions of the CONST, TYPE and VAR files can be
introduced, either temporarily or permanently, by files named F-V
where F is a reserved file name and V is the version name.

The organizations of the structures below the EXPORT and
PRIVATE catalogs are similar. The sons of each of these nodes
are named by the Pascal procedures stored there. Where a

GRAPHICS

SOURCE

4 transformation 2.mapping 0.io_primitives
3.clipping 1.dev_drivers

Fig. 2 The “levels” of the package

|.dev_drivers

CONST TYPE VAR EXPORT PRIVATE

procedures procedures

Fig. 3 Below root of level |

